124 research outputs found

    MapReduce and Streaming Algorithms for Diversity Maximization in Metric Spaces of Bounded Doubling Dimension

    Get PDF
    Given a dataset of points in a metric space and an integer kk, a diversity maximization problem requires determining a subset of kk points maximizing some diversity objective measure, e.g., the minimum or the average distance between two points in the subset. Diversity maximization is computationally hard, hence only approximate solutions can be hoped for. Although its applications are mainly in massive data analysis, most of the past research on diversity maximization focused on the sequential setting. In this work we present space and pass/round-efficient diversity maximization algorithms for the Streaming and MapReduce models and analyze their approximation guarantees for the relevant class of metric spaces of bounded doubling dimension. Like other approaches in the literature, our algorithms rely on the determination of high-quality core-sets, i.e., (much) smaller subsets of the input which contain good approximations to the optimal solution for the whole input. For a variety of diversity objective functions, our algorithms attain an (α+ϵ)(\alpha+\epsilon)-approximation ratio, for any constant ϵ>0\epsilon>0, where α\alpha is the best approximation ratio achieved by a polynomial-time, linear-space sequential algorithm for the same diversity objective. This improves substantially over the approximation ratios attainable in Streaming and MapReduce by state-of-the-art algorithms for general metric spaces. We provide extensive experimental evidence of the effectiveness of our algorithms on both real world and synthetic datasets, scaling up to over a billion points.Comment: Extended version of http://www.vldb.org/pvldb/vol10/p469-ceccarello.pdf, PVLDB Volume 10, No. 5, January 201

    A Practical Parallel Algorithm for Diameter Approximation of Massive Weighted Graphs

    Full text link
    We present a space and time efficient practical parallel algorithm for approximating the diameter of massive weighted undirected graphs on distributed platforms supporting a MapReduce-like abstraction. The core of the algorithm is a weighted graph decomposition strategy generating disjoint clusters of bounded weighted radius. Theoretically, our algorithm uses linear space and yields a polylogarithmic approximation guarantee; moreover, for important practical classes of graphs, it runs in a number of rounds asymptotically smaller than those required by the natural approximation provided by the state-of-the-art Δ\Delta-stepping SSSP algorithm, which is its only practical linear-space competitor in the aforementioned computational scenario. We complement our theoretical findings with an extensive experimental analysis on large benchmark graphs, which demonstrates that our algorithm attains substantial improvements on a number of key performance indicators with respect to the aforementioned competitor, while featuring a similar approximation ratio (a small constant less than 1.4, as opposed to the polylogarithmic theoretical bound)

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page

    Distributed k-Means with Outliers in General Metrics

    Get PDF
    Center-based clustering is a pivotal primitive for unsupervised learning and data analysis. A popular variant is the k-means problem, which, given a set P of points from a metric space and a parameter k < |P|, requires finding a subset S ⊂ P of k points, dubbed centers, which minimizes the sum of all squared distances of points in P from their closest center. A more general formulation, introduced to deal with noisy datasets, features a further parameter z and allows up to z points of P (outliers) to be disregarded when computing the aforementioned sum. We present a distributed coreset-based 3-round approximation algorithm for k-means with z outliers for general metric spaces, using MapReduce as a computational model. Our distributed algorithm requires sublinear local memory per reducer, and yields a solution whose approximation ratio is an additive term O(γ) away from the one achievable by the best known polynomial-time sequential (possibly bicriteria) approximation algorithm, where γ can be made arbitrarily small. An important feature of our algorithm is that it obliviously adapts to the intrinsic complexity of the dataset, captured by its doubling dimension D. To the best of our knowledge, no previous distributed approaches were able to attain similar quality-performance tradeoffs for general metrics

    Fully dynamic clustering and diversity maximization in doubling metrics

    Full text link
    We present approximation algorithms for some variants of center-based clustering and related problems in the fully dynamic setting, where the pointset evolves through an arbitrary sequence of insertions and deletions. Specifically, we target the following problems: kk-center (with and without outliers), matroid-center, and diversity maximization. All algorithms employ a coreset-based strategy and rely on the use of the cover tree data structure, which we crucially augment to maintain, at any time, some additional information enabling the efficient extraction of the solution for the specific problem. For all of the aforementioned problems our algorithms yield (α+ε)(\alpha+\varepsilon)-approximations, where α\alpha is the best known approximation attainable in polynomial time in the standard off-line setting (except for kk-center with zz outliers where α=2\alpha = 2 but we get a (3+ε)(3+\varepsilon)-approximation) and ε>0\varepsilon>0 is a user-provided accuracy parameter. The analysis of the algorithms is performed in terms of the doubling dimension of the underlying metric. Remarkably, and unlike previous works, the data structure and the running times of the insertion and deletion procedures do not depend in any way on the accuracy parameter ε\varepsilon and, for the two kk-center variants, on the parameter kk. For spaces of bounded doubling dimension, the running times are dramatically smaller than those that would be required to compute solutions on the entire pointset from scratch. To the best of our knowledge, ours are the first solutions for the matroid-center and diversity maximization problems in the fully dynamic setting

    An Efficient Rigorous Approach for Identifying Statistically Significant Frequent Itemsets

    Full text link
    As advances in technology allow for the collection, storage, and analysis of vast amounts of data, the task of screening and assessing the significance of discovered patterns is becoming a major challenge in data mining applications. In this work, we address significance in the context of frequent itemset mining. Specifically, we develop a novel methodology to identify a meaningful support threshold s* for a dataset, such that the number of itemsets with support at least s* represents a substantial deviation from what would be expected in a random dataset with the same number of transactions and the same individual item frequencies. These itemsets can then be flagged as statistically significant with a small false discovery rate. We present extensive experimental results to substantiate the effectiveness of our methodology.Comment: A preliminary version of this work was presented in ACM PODS 2009. 20 pages, 0 figure

    Accurate MapReduce Algorithms for k-Median and k-Means in General Metric Spaces

    Get PDF
    Center-based clustering is a fundamental primitive for data analysis and becomes very challenging for large datasets. In this paper, we focus on the popular k-median and k-means variants which, given a set P of points from a metric space and a parameter k<|P|, require to identify a set S of k centers minimizing, respectively, the sum of the distances and of the squared distances of all points in P from their closest centers. Our specific focus is on general metric spaces, for which it is reasonable to require that the centers belong to the input set (i.e., S subseteq P). We present coreset-based 3-round distributed approximation algorithms for the above problems using the MapReduce computational model. The algorithms are rather simple and obliviously adapt to the intrinsic complexity of the dataset, captured by the doubling dimension D of the metric space. Remarkably, the algorithms attain approximation ratios that can be made arbitrarily close to those achievable by the best known polynomial-time sequential approximations, and they are very space efficient for small D, requiring local memory sizes substantially sublinear in the input size. To the best of our knowledge, no previous distributed approaches were able to attain similar quality-performance guarantees in general metric spaces
    • …
    corecore